Linear discriminant analysis using rotational invariant L1 norm

نویسندگان

  • Xi Li
  • Weiming Hu
  • Hanzi Wang
  • Zhongfei Zhang
چکیده

Linear discriminant analysis (LDA) is a well-known scheme for supervised subspace learning. It has been widely used in the applications of computer vision and pattern recognition. However, an intrinsic limitation of LDA is the sensitivity to the presence of outliers, due to using the Frobenius norm to measure the inter-class and intra-class distances. In this paper, we propose a novel rotational invariant intra-class compactness and the inter-class separability by using the rotational invariant L1 norm instead of the Frobenius norm. Based on the DCL1, three subspace learning algorithms (i.e., 1DL1, 2DL1, and TDL1) are developed for vector-based, matrix-based, and tensor-based representations of data, respectively. They are capable of reducing the influence of outliers substantially, resulting in a robust classification. Theoretical analysis and experimental evaluations demonstrate the promise and effectiveness of the proposed DCL1 and its algorithms. & 2010 Elsevier B.V. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An alternative transformation in ranking using l1-norm in data envelopment analysis

Jahanshahloo et al. (Appl Math Comput 153:215–224, 2004) propose a method for ranking extremely efficient decision making units (DMUs) in data envelopment analysis (DEA) using super-efficiency technique and l1-norm and they show that the presented method is able to eliminate the existing difficulties in some methods. This paper suggests an alternative transformation to convert the nonlinear mod...

متن کامل

An L1-norm method for generating all of efficient solutions of multi-objective integer linear programming problem

This paper extends the proposed method by Jahanshahloo et al. (2004) (a method for generating all the efficient solutions of a 0–1 multi-objective linear programming problem, Asia-Pacific Journal of Operational Research). This paper considers the recession direction for a multi-objective integer linear programming (MOILP) problem and presents necessary and sufficient conditions to have unbounde...

متن کامل

Optimal Conjugate Gradient Algorithm for Generalization of Linear Discriminant Analysis Based on L1 Norm

This paper analyzes a linear discriminant subspace technique from an L1 point of view. We propose an efficient and optimal algorithm that addresses several major issues with prior work based on, not only the L1 based LDA algorithm but also its L2 counterpart. This includes algorithm implementation, effect of outliers and optimality of parameters used. The key idea is to use conjugate gradient t...

متن کامل

lp norm multiple kernel Fisher discriminant analysis for object and image categorisation

In this paper, we generalise multiple kernel Fisher discriminant analysis (MK-FDA) such that the kernel weights can be regularised with an `p norm for any p ≥ 1, in contrast to existing MK-FDA that uses either l1 or l2 norm. We present formulations for both binary and multiclass cases and solve the associated optimisation problems efficiently with semi-infinite programming. We show on three obj...

متن کامل

Rotational Linear Discriminant Analysis Using Bayes Rule for Dimensionality Reduction

Linear discriminant analysis (LDA) finds an orientation that projects high dimensional feature vectors to reduced dimensional feature space in such a way that the overlapping between the classes in this feature space is minimum. This overlapping is usually finite and produces finite classification error which is further minimized by rotational LDA technique. This rotational LDA technique rotate...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Neurocomputing

دوره 73  شماره 

صفحات  -

تاریخ انتشار 2010